Moving Towards CA and Big Data with Audit Analytics
Big data and the Audit Data Standard: forensic accounting implications

12th Fraud Seminar
December 1st, 2015
Miklos A. Vasarhelyi
KPMG Distinguished Professor of AIS
Director of the CarLab
Rutgers Business School
Outline

• The CarLab
• Big data and evidence
• Audit data standard and “apps”
• Imagineering
• From the IAASB presentation
• Moving towards continuous audit and data analytics
• Some additional analytics
• Conclusions
THE CARLAB (CONTINUOUS AUDIT AND REPORTING LAB)
Visit

- http://raw.rutgers.edu
- miklosv@rutgers.edu
Audit Methodologies

- Multidimensional Clustering
- Process Mining
- Continuity Equations
- Predictive Auditing
- Visualization
- Analytic Playpen

Audit Automation
P&G: Order to Cash
Auditor Judgment
Siemens- AAS Automation
AICPA – ADS / APS
Moving Towards CA and Big Data with Audit Analytics

The CarLab

<table>
<thead>
<tr>
<th>Predictive Analytics with Weather data</th>
<th>Audit data analytics and EDA</th>
<th>Envisaging the future of audit and Big Data</th>
<th>Text Mining</th>
<th>Monitoring Unibanco’s branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Mining at Gamma Bank</td>
<td>Expert System for P-Card</td>
<td>Logit regression for control risk</td>
<td>Exceptional Exceptions</td>
<td>Client Retention Project</td>
</tr>
<tr>
<td>Fraud Risk Assessment using EDA</td>
<td>Detecting duplicate records</td>
<td></td>
<td>Predictive Audit</td>
<td>Credit card Default prediction</td>
</tr>
<tr>
<td>Multidimensional clustering for fraud detection</td>
<td>Rule-based selection for transitory accounts</td>
<td>Continuity Equations at HCA</td>
<td>XBRL</td>
<td>Insurance Analytics</td>
</tr>
</tbody>
</table>
AND SEAPS INTO EDUCATION
Usage

- Achieved our highest view count yet with 82,035 views for the month of September.
- Growth can be attributed to splitting our videos into modules, start of the new semester, and additional courses being added to the library.
- New Camera Equipment
Moving Towards CA and Big Data with Audit Analytics
Continuous audit, audit analytics, and forensics

- Continuous audit is by its essence based in automation and analytic methods, although follow-ups tend to currently be automated
- The “lines of defense” are progressively being confused by automation. An outlier finding is as interesting to auditors and forensic accountants as for internal auditors and managers
- Big data generates substantive follow-up that cannot be done without analytics (exceptional exceptions), some automation, and most of times (still) human judgment
- Audit can be divided in retroactive and predictive
 - Predictive can be broken down as preventive and predictive
- Fraud examples allow “trained learning methods”
Big data and audit evidence

Helen Brown-Liburd and Miklos A. Vasarhelyi
Moving Towards CA and Big Data with Audit Analytics

BIG DATA

Clickpath Analysis

Multi-URL Analysis

Scanner data

Web data

ERP data

Hand collection

Semi-Automatic collection

Automatic collection

High frequency collection

IoT data

What is its path?

What are its vital signs?

Where are you?

What is its path?

Where is this object?

What did you buy?

What Products relate?

Can you predict results?

Can you control inventory online?

Can you keep real time inventory?

Can you audit inventory real time?
WHAT IS DRIVING GROWTH?

The IoT value proposition – a driver of new product cycles and another leg of cost efficiencies

REVENUE GENERATION

Companies are focused on the IoT as a driver of incremental revenue streams based on new products and services.

PRODUCTIVITY AND COST SAVINGS

Businesses are also embracing the IoT to improve productivity and save costs.

Consumer demand is also driving IoT adoption as they embrace new technology to improve health, energy savings and safety.

WHAT IS THE FUTURE?

The Internet of Things (IoT) is emerging as the third wave in the development of the Internet. Personal lives, workplace productivity and consumption will all change. Plus there will be a string of new businesses, from those that will expand the Internet “pipes”, to those that will analyze the reams of data, to those that will make new things we haven’t even thought of yet.

DEVICES CONNECTED TO THE INTERNET

Source: IDC

1 BILLION
‘96 – ‘15
FIXED INTERNET IN THE 90’S

6 BILLION
‘06 – ‘20
MOBILE INTERNET IN THE 2000’S

28 BILLION
“THINGS” CONNECTED TO THE INTERNET BY 2020

35th WCARS
BIG ENVIRONMENTAL DATA

- Social media
- E-mails
- New splices
- Security videos
- News videos
- Media programming videos
- Security recordings
- Media recordings
- Telephone recordings

Boundary data

- Web data
- IoT data
- Mobility data
- Scanner data
- ERP data
- Legacy data

Corporate data
LOOKING AHEAD (IMAGINEERING)
THE THINKING THAT MUST GO INTO CHANGE
Moving Towards CA and Big Data with Audit Analytics

Real time inventory ordering, supplier managed inventory, product mix management

Real time detection of inventory receiving

Year end physical counts
Month end RFID counts
Day end RFID counts

Real time detection of inventory reduction
Real time recording of sales & cash & receivables

Every second RFID and GPS and e-commerce records

Social media

E-mails

Suppliers

Inventory

Sales

Customers

Security videos
Audit Data Standard and “Apps”
Moving Towards CA and Big Data with Audit Analytics

- Corporate data stores
- Unstructured data
- Exogenous data

Audit Plans (AAS)

Audit data

Automatic capture

Manual capture

Exogenous data

Audit data and control standards

Continuous assurance

Audit generation of audit

APPS

Selection algorithm
Digital environment characteristics

- Multiple use of single data strings
- Sliceable at many intervals of time
- Can be accumulated by multiple parties
- May be subject to many encryption protocols
- Fixed development costs minimum variable costs mainly composed of storage
- The effects of piggybacking
 - Code sharing
 - Multiple layers
 - Several layers of entry points
Moving Towards CA and Big Data with Audit Analytics
Audit Data Analytics

Bob Dohrer, IAASB Member and Working Group Chair
Miklos Vasarhelyi
Phillip McCollough

IAASB Meeting
September 2015
Agenda Item 6-A
• Procedure: For every invoice, shipping document and sales order received from customers, compare the invoiced customer, quantity, and unit price to the quantity shipped per the shipping documents and the quantity and unit price reflected in the sales order received from the customer.

• Objective: Obtaining audit evidence over the existence and accuracy of revenue. (ISA 500 paragraphs 6 and 9).

• Prior year approach: Tests of internal controls over the revenue process, substantive analytical procedures and tests of details (sampling).
Entity ABC has revenue of €125 million generated by 725,000 transactions. The three way match procedure is executed with the following results:

<table>
<thead>
<tr>
<th>Exceptions</th>
<th>Amount (€’000)</th>
<th>%</th>
<th>Number of Transactions</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exceptions differences</td>
<td>119,750</td>
<td>95.8</td>
<td>691,000</td>
<td>95.3</td>
</tr>
<tr>
<td>Exceptions - Outliers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity differences</td>
<td>3,125</td>
<td>2.5</td>
<td>16,700</td>
<td>2.3</td>
</tr>
<tr>
<td>Pricing differences</td>
<td>2,125</td>
<td>1.7</td>
<td>17,300</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Note: Materiality for the audit of the financial statements as a whole is €1,000,000.
• Procedure: For every sales transaction, evaluation of any segregation of duties conflicts relative to customer master file maintenance, sales order processing, sales invoicing, sales returns / credit notes, and applying cash collections.

• Objective: Obtaining audit evidence over the effectiveness of internal control over sales processing.\(^1\) (ISA 330 paragraphs 8–9 and ISA 315 paragraph 12)

\(^1\) This is one of the tests of control over sales processing.
For entity ABC, an analysis of segregation of duties was executed with the following findings:

<table>
<thead>
<tr>
<th></th>
<th>Number of users</th>
<th>Amount (€‘000)</th>
<th>Number of transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population of sales</td>
<td>542</td>
<td>125,000</td>
<td>725,000</td>
</tr>
<tr>
<td>Instances in which same individual created sales</td>
<td>7</td>
<td>620</td>
<td>3,934</td>
</tr>
<tr>
<td>invoice, sales return or credit note and applied cash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instances in which same individual executed sales</td>
<td>96</td>
<td>7,692</td>
<td>46,903</td>
</tr>
<tr>
<td>order processing, dispatched goods (delivery document) and applied cash</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Materiality for the audit of the financial statements as a whole is €1,000,000.
Illustration 3 – Predictive Analytic (cont.)
Clustering Using Store Sales by Peer Group
Illustration 4 – Clustering (cont.)
Visualizing combination of attributes, we will be able to see similarity and differences among claims.
Moving towards continuous audit and big data with audit analytics: Implications for research and practice

By Deniz Appelbaum, Alexandr Kogan, and Miklos Vasarhelyi

of Rutgers, the State University of New Jersey

for the

35th World Continuous Auditing & Reporting Symposium

November 6&7, 2015

Hosted by: Rutgers Accounting Research Center (RARC) and Continuous Auditing & Reporting Laboratory (CAR-Lab)
Audit Data Analytics (ADA): One way to define...

Audit Data Analytics (ADA) is the analysis of data underlying financial statements, together with related financial or non-financial information, for the purpose of identifying potential misstatements or risks of material misstatement.

ADA includes methodologies for:

- Identifying and analyzing **anomalies** in the data
- Identifying and analyzing **patterns** in the data including outliers
- Building **statistical (e.g., regression) or other models** that explain the data in relation to other factors and identify significant fluctuations from the model
- Synthesizing pieces of information from disparate analyses and data sources into wholes that are greater than the sum of their parts for purposes of overall evaluation

ADA defined in this way includes:

- Analytical Procedures (AU-C 520)—preliminary, substantive, and FS review—including reasonableness testing
- Traditional file interrogation

(Liu, 2014)
ADA mode can be exploratory or confirmatory

<table>
<thead>
<tr>
<th></th>
<th>Exploratory mode</th>
<th>Confirmatory mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>When</td>
<td>Planning</td>
<td>Performance</td>
</tr>
<tr>
<td>Question</td>
<td>What is going on here? Does the data suggest something might have gone wrong? Where do the risks appear to be? What assertions should we focus on?</td>
<td>Does the data conform with and thus confirm my model for what ought to be?</td>
</tr>
<tr>
<td>Approach style</td>
<td>Bottom-up, inductive, few starting assumptions, assertion-free</td>
<td>Top-down, deductive, model-driven, starts with development of model based on assertions to be tested</td>
</tr>
<tr>
<td>Methods</td>
<td>Graphical visualizations used to discover patterns in and understand the data—possibly several to get different viewpoints</td>
<td>Comparison of actual data to model taking into account materiality, desired assurance and assertions being tested; more mathematical than graphical</td>
</tr>
<tr>
<td>Results</td>
<td>Identified risks, areas of focus, potential models for confirmatory stage</td>
<td>Identified anomalies, unexpected patterns, outliers and other significant deviations</td>
</tr>
</tbody>
</table>
ADA Examples

Exploratory
- Cluster analysis
- Text and data mining
- Data visualization
 - Scatterplots
 - Scatterplot matrices
 - Line charts
 - Spread charts
 - Needle graphs
 - Small multiples of graphics
 - Heat maps
 - Treemaps
 - Relationship maps

Confirmatory
- Analytical procedures
 - Regression analysis, ratio analysis
 - Reasonableness tests
- Recalculations
- Traditional file interrogation
 - Footing, extending
 - Duplicate detection
 - Out-of-range detection
 - Other 100% tests
- Journal entry testing (SAS 99)

Exploratory and confirmatory ADA is a spectrum of analytics and the processes are iterative, starting with exploratory

(Stewart and Liu, 2014)
Audit Analytics Framework

Orientation: descriptive, predictive or prescriptive

Techniques:
- qualitative or quantitative
- deterministic or statistical
- based on unstructured, semi-structured, or structured data

The most commonly used AA techniques are those that are quantitative, statistical, and based on structured data.

The dominance of quantitative techniques in AA is due to the fact that the main objective of external audit is to provide assurance on the accounting numbers. Therefore, the accounting numbers are the quantities that are the focus of AA.

(Wikipedia, 2015)
<table>
<thead>
<tr>
<th>Machine Learning/Data Mining:</th>
<th>Process Mining</th>
<th>Simulation, Process Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Classifiers</td>
<td>Support Vector Machine (SVM), Artificial Neural Networks (ANN), Multilayer Feed Forward Neural Network (MLFF), Genetic Algorithm</td>
<td></td>
</tr>
<tr>
<td>Rules-Based Classifiers</td>
<td>Expert Systems/Decision Aids, Majority Vote, AntMiner +</td>
<td></td>
</tr>
<tr>
<td>Ensemble Methods</td>
<td>Boosting, Bagging, Bootstrap</td>
<td></td>
</tr>
<tr>
<td>Decision Trees</td>
<td>C4.5 statistical classifier</td>
<td></td>
</tr>
<tr>
<td>Bayes Classifiers/Probability Models</td>
<td>Bayesian Theory/Bayesian Belief Networks (BBN), Naïve Bayes, Dempster-Shafer Theory, Probability Theory</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Clustering, Text Mining, Visualization, Group Method of Data Handling (GMDH)</td>
<td></td>
</tr>
</tbody>
</table>
Literature Review of Analytical Procedures in the External Audit: Techniques

<table>
<thead>
<tr>
<th>"Traditional" Audit Analytics:</th>
<th>CAATS</th>
<th>Transaction Tests, Data Modeling, Data Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Traditional" Analytical Review/Analytics</td>
<td>Sampling, Ratio Analysis, Firm developed proprietary software</td>
<td></td>
</tr>
<tr>
<td>Statistics: Log Regression</td>
<td>Log Regression, Step-Wise Logistic, Ordinal Regression Model</td>
<td></td>
</tr>
<tr>
<td>Statistics: Linear Regression</td>
<td>Linear Regression</td>
<td></td>
</tr>
<tr>
<td>Statistics: Time Series Regressions</td>
<td>Time Series Regression, Auto Regressive Integrated Moving Average (ARIMA), Box Jenkins (ARIMA), Random Walk (ARIMA), Random Walk Drift (ARIMA), Seasonal Time Series X-11, Martingale, Sub-Martingale, Single and Double Exponential Smoothing Model</td>
<td></td>
</tr>
</tbody>
</table>
Prescriptive Audit Analytics: Looking Forward

• “It has also been shown that many internal audit procedures can be automated, thus saving costs, allowing for more frequent audits and freeing up the audit staff for tasks that require human judgment (Vasarhelyi, 1983, Vasarhelyi, 1985; Alles, Kogan, and Vasarhelyi, 2002).” (AICPA, 2015)

• Audit Methods have been retroactive as most manual methods relied on some degree of manual verification of source documents or third party verification of balances thru manual confirmation

• Overall, the expected value of assurance efforts must be larger than its costs. Once manual efforts are voluminous they become very expensive.
Evolving the Environment

The evolutionary environment (adapted Liu and Vokurka, 2014)
An Audit Eco-System

Audit Ecosystem (adapted from AICPA, 2015 chapter 1)
ADDITIONAL ANALYTICS
Exceptional Exceptions
Unibanco p rules

FRAUD (I.E., CC EXAMPLE)
Exceptional Exceptions
Loading factors

• Populations are too large for traditional sampling
• Loading factor = a. X1 + b. X2 + cX3 + dX4
• from YB Kim’s work a, b, c, and d are 1
• From Hussein Issa’s work on exceptional exceptions different parameters can be given different values (behavioral or other approaches)
Moving Towards CA and Big Data with Audit Analytics
Process mining

Mieke Jens (Hasselt University)
Michael Alles (Rutgers Univ.)
Designed ("Ideal") Process Model

Diagram showing steps:
1. Create Purchase Order
2. Sign
3. Release
4. Receive Goods
5. Receive Invoice
6. Pay
Social Network of 175 cases by three individuals violating SOD
Social Network of the 742 Cases Without *Sign* and in Violation of SOD Controls
CONCLUSIONS
Some research questions

• The appropriateness of the method for a particular forensic function?
• How should the forensic function be reorganized to better use ADA?
• How can predictive technologies be used to set comparison models against which match actuals. How to set allowable variance (Vasarhelyi & Bumgartner, 2015)?
• How to set the timing of performing an assurance / forensic function?
• What types of “suspicion functions” should be set up for a preventive audit or just for transaction or account review?
• How can validation function be developed that link corporate information with big data variables to validate the dimensionality and predict variances?
• How can we migrate to a complex ecosystem and more advance assurance processes while not disrupting the current processes?
Moving Towards CA and Big Data with Audit Analytics